Computing Integrals of Highly Oscillatory Special Functions Using Complex Integration Methods and Gaussian Quadratures

نویسندگان

  • Gradimir V. Milovanović
  • D. Occorsio
چکیده

An account on computation of integrals of highly oscillatory functions based on the so-called complex integration methods is presented. Beside the basic idea of this approach some applications in computation of Fourier and Bessel transformations are given. Also, Gaussian quadrature formulas with a modified Hermite weight are considered, including some numerical examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratures for oscillatory and singular integrals

Numerical methods for strongly oscillatory and singular functions are given in this paper. Beside a summary of standard methods and product integration rules, we consider a class of complex integration methods, as well as Gaussian quadratures with respect to the oscillatory weight w(x) = xe, x ∈ [−1, 1]. Numerical examples are included.

متن کامل

TWO LOW-ORDER METHODS FOR THE NUMERICAL EVALUATION OF CAUCHY PRINCIPAL VSlLUE INTEGRALS OF OSCILLATORY KIND

In this paper, we develop two piecewise polynomial methods for the numerical evaluation of Cauchy Principal Value integrals of oscillatory kind. The two piecewisepolynomial quadratures are compact, easy to implement, and are numerically stable. Two numerical examples are presented to illustrate the two rules developed, The convergence of the two schemes is proved and some error bounds obtai...

متن کامل

Weighted Quadrature Rules for Finite Element Methods

We discuss the numerical integration of polynomials times exponential weighting functions arising from multiscale finite element computations. The new rules are more accurate than standard quadratures and are better suited to existing codes than formulas computed by symbolic integration. We test our approach in a multiscale finite element method for the 2D reaction-diffusion equation. Standard ...

متن کامل

Numerical methods for highly oscillatory integrals on semi-finite intervals

In highly oscillatory integrals, the integrand fw(x) oscillates rapidly with a frequency ω. For very high values of ω, numerical evaluation of such integrals by Gaussian quadrature rules can be of very low accuracy. In such problems which have many applications in mathematical physics, it is important to devise algorithms with errors which decrease as fast as w−N , for some N > 0. In this paper...

متن کامل

An Automatic Integration of Infinite Range Integrals Involving Bessel Functions

An efficient automatic quadrature procedure is developed for numerically computing the integrals 0 , where the function is smooth and nonoscillatory at infinity and is the Bessel functions of order ν =1,0 and 1/4. The procedure involves the use of an automatic integration scheme of modified FFT used for evaluating Fourier integrals and product type integration, and the modified W-transformation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017